产品及服务
全国统一服务热线:400-006-5606
400-006-5606
应用案例
风机节能变频技术应用
发布时间:2018-7-6 13:24:00   来源:杭州三科变频科技有限公司   人气值:

1、高压变频节能的特点分析

利用高压变频技术对风机转速进行控制的原理为实现电机输入频率的改变,而在改变的过程中并不会额外地消耗电机功率,能够促进电机综合效率的提高。电机变频节能的主要特点包括以下几个方面:

第一,电机综合效率比较高,且发热量与能耗都比较低;

第二,具有无极调速的特点,具有较为广泛与精准的调速功能;

第三,启动时所需的电流比较小,节能效果突出,同时也不会对所在的电网造成冲击;

第四,不存在转差率损耗;

第五,能够促进电机功能因数的提高,不需要在另外加装无功补偿装置;

第六,具有较高的自动化水平,具有自动限流、限压、减速等功能,同时能够对故障、运行及报警情况进行记录,对系统的安全运行奠定了基础;

第七,依据电量成本对电机转速进行智能化的调节。随着电力建设的不断发展,电力供需矛盾不断激化,只有对风机的流量进行调节才能够更好地满足生产的需要,通过这种方式提高企业效益,降低企业能耗。

2、高压变频技术在风机中的变频方式

高压变频技术在风机中进行应用时,其主要的变频方式包括“高-低-高”、“高-低”、“高-高”等,其中效率最高的变频方式就是“高-高”方式,能够更好地满足风机节能降耗的要求。“高-高”方式的变频器中包括集中不同的类型,其中输入为6kV-10kV的变频器,并不需要进行升压变频器的设置;输出电压为10kV的变频器,每项中包含了8个功率单元,而且这些功率单元之间是通过串联的方式连接。如果每个单元的输入电压都为三相710kV,那么其输出的电压则为单相0kV-710kV,而每个功率单元之间都是通过串联方式连接的,叠加之后的输出相电压则为5680kV。

变频器的中点与电动机中性点之间并不相互连接,因此变频器输出实际上是线电压,通过A相与B相输出电压形成UAB输出线电压,该线电压最大可以达到10kv,其阶梯波为37。由于变频器中采用了多重叠加的方法,输出电压中谐波含量比较小,已经达到了常规供电电压允许的谐波含量,并不会导致电动机由于附加的谐波而出现发热的情况。输出电压也比较小,给电极增加的应力并不明显,能够直接向普通标准型的交流电将会因动机进行供电行为,并不需要对其进行降容之后再使用,能够在旧设备的改造中进行利用。

此外,输出电压谐波较小,并不需要另外在附加输出滤波器,输出电缆的长度也并不受限制。“高-低-高”方式的变频器具有以下几个方面的特点:

第一,在该种类型的变频器中采用了降压变压器与升压变压器,导致变频调速系统的效率出现了下降的情况。

第二,升压变压器在工作的过程中会导致输出波形严重畸变的情况,导致电动机由于附加谐波而出现发声的情况,最终导致机械共振及传动、轴承磨损严重的情况。

第三,该种类型的变频器在使用的过程中将会产生比较大的噪声。通过两种不同变频方式的变频器的比较之后发现,“高-高”方式变频器有着非常显著的优势,逐渐取代了“高-低-高”方式变频器。

3、高压变频技术在风机节能中的应用

3.1风机情况概述

本文选取某企业的1台风机作为节能改造的对象,选取的风机在流量调节的过程中主要采用风门调节的方式,风门的开度在百分之三十到百分之八十之间。实现高压变频技术对风机进行调速节能改造之后,与传统的风门调节方式相比,生产负荷决定了风机的节电量,生产负荷的变化越大,风机节能的效果就越好。实现高压变频技术在风机节能中的应用,一方面可以达到调速节能的目的,另一方面能够提高整个调试系统的工作效率。

3.2改造前的电机系统运行模式

本文选取的高压电机都采用的是风机传动的方式,通过风门调节的方式实现风机流量的调节工作。当前,风门调节的方式为改变风机管网特性曲线实现风机风量调节,其主要的原理如图1所示。由图1可知,风机在管网特征曲线R1处工作时,工况点为M1,风量为Q1,风压为H1。如果要实现风量的降低,则需要关小风机的防风版,管网特性曲线变为R2,工况点也随之变为M2,风量为Q2,风压为H2。管网特性曲线的改变实际上就是通过人为的方式实现风机管网阻力的增加或者降低,在确保风机性能曲线不变的情况下,工况点从M1转移到M2,如果想要实现挡风板继续减小,则管网特性曲线变为R3,工况点为M3,风量为Q3,风压为H3。通过这种方式实现风机流量的调节。通过风机调价风量的方式具有结构简单、操作便捷的特点,大部分的风机都采用这种调节方式。然而,通过人为的方式实现风机管网阻力的改变,势必会造成部分能量的消耗,尤其是风量的变化越大,能量的损耗就越多。如果通过电机直接调试的方式来实现风机流量的控制,就可以实现人为改变风机官网阻力所消耗的能量的节约。因此,提出了电机调速控制模式。

3.3主回路系统方案

3.3.1手动一拖一动回路手动一拖一动回路如图2所示,其基本的原理为:回路中包含了三个高压隔离开关,分别为QS1、QS2与QS3。在使用的过程中,不能够同时出现闭合的状态。在变频运行的过程中,QS1、QS2闭合,则QS3断开;在工频运行的过程中,QS3闭合,QS1与QS2断开。手动一拖一动回路的优点为:在变频器进行检修的过程中,这种明显的断电点能够确保维修人员的安全,同时也可以通过手动的方式将负载投入到工频电网运行。3.3.2手动一拖二动回路手动一拖二动回路如图3所示,其基本的原理为:手动一拖二动回路中包含了QS1—QS6六个高压隔离开关,其中QS2与QS3、QS5与QS6有电气互锁,QS1与QS5、QS4与QS6安装机械互锁装置。M1与M2分别处于变频状态与工频状态中,而且可以进行互换;在变频器检修的过程中,都可以处于工频运行中。手动一拖二动回路优点指的是只有一个负载工作在变频状态中,能够实现电机使用寿命的延长。

4、总结

通过高压变频技术实现风机节能改造之后,其节电率得到了明显的提高,节能效果非常的显著,为缓解我国资源供应与资源需求之间的矛盾做出了重要的贡献。同时,实现了风机的节能改造之后,实现了风机系统振动、磨损与噪声的降低,实现了风机使用寿命的延长,为企业带来了经济效益与社会效益。